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Introduction to New-Keynesian 
Economics 

Jarek Hurnik 

  



Building Blocks 

 Household’s problem 

 Firms’ problem 

 Sticky prices 

 Monopolistic competition 

 Policy rule 
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Before we start: Terminology 

 Structural: Each equation has an economic 
interpretation 

 General Equilibrium: Demand=Supply 

 Stochastic: There are random shocks 

 Rational expectations: Agents use past 
information and the knowledge about how the 
economy works (the model) to make inference 
about future 

 Dynamic: We care not only about today but 
also about yesterday and tomorrow 
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Household’s problem 

 Maximize: 

 

 

 

 Notation: 

    :consumption 

     :labor,       :leisure 

          :real money balances 

 Note that there is no investment or government in 
the model so  
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Household’s problem 

 

 

 

 

 Representative households with preferences defined over 
consumption, real money balances and leisure. 

 Money in the utility: 

 Households are better off when they hold more real money 
balances 

 Expectations are rational 
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Household’s problem 

 

 

 

     is a basket 

 Consisting of differentiated products produced by 
monopolistically competitive final goods producers.  

 There is a continuum of firms and each firm j 
produces good  

    is the price elasticity of demand for the individual 
goods. 
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Household’s problem 

 Household’s problem can be solved in two 
stages 

1- Minimize cost for a given C 

2- Given the cost of achieving any given C, 
choose C, N and M  
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 Minimize 

 

 

subject to 

 

 

 

where     is the price of good j. 
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 The Lagrange function is as follows 

 

 

 

 

 And the first order condition for any   
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 Using the definition of the composite good  

 

 

 

 We get 
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 And finally  

 

 

 We substitute this back in the definition of the 
composite good: 
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Household’s problem: first stage 

 And solve for    : 

 

 

 The Lagrange multiplier is the appropriate price 
index (shadow price) for consumption. 

 The demand for j-th good is: 
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Household’s problem: first stage 

 

 

 

 This is the individual “demand curve” 

 Demand for a particular good j depends on its 
price relative to composite good price index  

 Price elasticity of demand for good j is also 
important. As          , individual goods become 
closer substitutes and firms have less market 
power 
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Household’s problem: second 
stage 

 

 

 

 

 

     is household’s nominal holdings of one-period 
bonds 

 Bonds pay a nominal interest rate of 

 Real profits received from firms are  

     nominal wages 
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Household’s problem: second 
stage 

 Choose consumption, labor supply, money, and 
bond holdings. First order conditions are: 
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Household’s problem: second 
stage 

 

 

 

 Euler equation (inter-temporal) for the optimal 
intertemporal allocation of consumption:  

 On the LHS: marginal utility of 1 unit of consumption 
today  

 On the RHS: Expected marginal utility of consumption 
tomorrow if decide to save that 1 unit of consumption 
today 

 In equilibrium these two need to be equal 
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Household’s problem: second 
stage 

 

 

 

 

 Intratemporal optimality condition to pin down 
money holdings  

 On the LHS: marginal rate of substitution between 
money and consumption 

 On the RHS: opportunity cost of holding money 
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Household’s problem: second 
stage 

 

 

 

 Intratemporal optimality condition to determine 
labor supply 

 On the LHS: Marginal rate of substitution between 
leisure and consumption 

 On the RHS: Real wage 
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Firms’ problem 

 Maximize profits subject to: 

 1- Constant returns to scale technology 

 

 
 Where Z is an aggregate productivity shock 

 2- Demand curve of the HH 

 3- Sticky prices a la Calvo (1983): explained in next 
slide… 

 

 Firms are identical except that they might have 
set their prices at different dates in the past. 
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Firms’ problem 

 Calvo pricing 

 Each period, firms that adjust their price are 
randomly selected 

 A fraction         of firms adjust while remaining                    
do not. 

    measures the degree of nominal rigidity 

 Higher             fewer firms adjust each period, 
expected time between price adjustments is longer 

 Firms that adjust do so to maximize expected 
discounted value of current and future profits 
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Sticky prices 

 Why should prices adjust slowly?  

 One common explanation is “menu costs”: 
small costs that must be paid in order to adjust 
nominal prices.  

 The costs of making a new catalog, price list, or 
menu. 
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Sticky prices 

 There are also externalities that go along with 
changing prices: 

 A firm that lowers its prices because of a decrease in 
the money supply will be raising the real income of 
the customers of that product.  

 This will allow the buyers to purchase more, which 
will not necessarily be from the firm that lowered 
their prices.  

 As firms do not receive the full benefit from reducing 
their prices their incentive to adjust prices in 
response to macroeconomic events is reduced. 
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Monopolistic competition 

 Without some monopoly power it doesn’t make 
sense to assume sticky prices!  

 Under perfect competition, any firm with a price slightly 
higher than the others would be unable to sell anything. 
Any firm with a price slightly lower than the others 
would be obliged to sell much more than they can 

profitably produce.  

 Firms use their market power to maintain their 
prices above marginal cost, so that even if they 
fail to set prices optimally they will remain 
profitable. 
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Firms’ problem: First stage 

 Cost minimization: minimize wage bill subject to 
producing a given amount 

 

 

 

     is the firms’ marginal cost.  

 First order condition is: 
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Firms’ problem: Second stage 

 Price setting: choose price to maximize present 
discounted value of profits 

 

 

 

 

 Where                          is the discount factor 

 It is the same as households’ discount factor 
since households are assumed to own the firms 
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Firms’ problem: Second stage 

 Substituting households’ demand curve for the j-th 
firm production in the j-th firm’s profit maximization: 

 

 

 

 Let    be the optimal price chosen by firms adjusting 
at time t. Then the firm’s f.o.c. is: 
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Firms’ problem: Second stage 

 The f.o.c. is solved for    : 

 

 

 

 Using                           it can be rearranged in real 
terms as: 
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Firms’ problem: Second stage 

 If all firms could adjust every period, i.e. under 
flexible prices: (      ) 

 

 
 Each firm sets its price to a markup    over its nominal 

marginal cost 

 A standard result in a model of monopolistic competition 

 As price>marginal cost, output is inefficiently low even under 
flexible prices! 

 Further it holds that under flexible prices all firms 
set the same price,          and   
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Firms’ problem: Second stage 

 Remember: 

 

 

 Since the adjusting firms are chosen randomly 
form a continuum of firms following aggregation 
holds: 

 

 

 That is in fact what is so attractive on Calvo 
pricing. Thanks Calvo! 
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Sum up … 

 A non-linear version of the model looks as follows: 
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Sum up … 

 Equations above represent a system of non-
linear forward-looking equations 

 It is impossible to handle them in that form 

 To find a solution, i.e. a system of equations 
where variables do not depend on future values, 
equations above have to be approximated 

 The most common approximation is a first order 
Taylor approximation, i.e. a linear approximation 
around a fixed point 

 We know how to solve a system of linear 
forward-looking difference equations     
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Log-linear approximation of 
household’s f.o.c.  

 Approximation of the Euler equation around the zero 
steady state: 

 

 

 And because it holds:          (no investment or 
government) 

 It can be written also as: 
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Log-linear approximation of 
household’s f.o.c.  

 Equation above can be also expressed in terms of the 
output gap 

 

 

 

 Where     is the policy neutral real rate driven by the 
expected evolution of the flexible-price equilibrium output   

 

 

 We get an IS curve! 

 Output gap depends on the real interest rate gap 

33 

 n

ttttttt rEixEx ˆˆ1
11 











 

f

t

f

tt

n

t yyEr ˆˆˆ
1  

f

ttt yyx ˆˆ 
Flexible-price 
equilibrium output 

n

tr̂



Flexible-price equilibrium output 

 Equation for the flexible-price equilibrium output can 
be derived analytically using the fact that under 
flexible-prices   

 While from production function  

 And the real wage must be equal to the households’ 
MRS between the consumption and leisure  

 

 Combining these and using the fact that under 
flexible prices  

 

                                         and  
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Log-linear approximation of 
household’s f.o.c.  

 Approximation of the intratemporal (labor market) 
first order condition: 

 

 Real wage is equal to the MRS between leisure and 
consumption 

 Labor market is always cleared in this version!  

 Approximating the third first order condition: 

 

 

 We get a money demand equation! 
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The role of money 

 For a given interest rate, consumption and price 
level one can calculate the implied money using 
the equation above. 

 But money does not appear in IS curve or in the 
Phillips curve! 

 This is because money and consumption are 
separable in the utility function 

 Money is needed for transactions but is not a 
driving force for the model 
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Log-linear approximation of firms’ 
price setting 

 Using the pricing function of firms and the price 
aggregation   

 

 

 

 

 

 And quite terrible math … 

 One gets the so called New Keynesian Phillips 
curve 
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New Keynesian Phillips curve 

 

 

 Forward looking inflation process 

 When a firm sets its price it must consider future 
inflation because it may not be able to re-set its price 
for a while 

 Real marginal cost is an important variable 
driving the inflation process 

 The weight on inflation expectations vs. real 
marginal cost depends on the degree of price 
stickiness 
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Marginal costs and output gap 

 The IS curve is written in terms of the output gap, 
while inflation is driven by marginal costs 

 Marginal costs can be approximated by the output 
gap if certain condition is met (see Appendix) 

 Analytically - MRS between leisure and consumption 
must be equal to the real wage at any time (labor 
market must clear) 

 Practically - real wages must be pro-cyclical (at least) 

 Then … 
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Policy rule 

 To close the model we need an interest rate rule.  

 But not just ANY rule!  

 It needs to satisfy certain conditions to avoid unstable 
dynamics or multiple equilibrium 

 Example of an unstable rule: 

 

 Remember our other two equations: 
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Policy rule 

 Write these three equations in matrix form : 

 

 

 

 

 Mathematically, these matrices need to satisfy 
certain properties to guarantee a unique 
solution. 
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Policy rule 

 Will not get into technical details but there are 
multiple solutions to the above system!  

 Sunspot equilibria are possible 

 To see this think about what would happen if inflation 
expectations were to rise 

 Since the rule does not have inflation on the RHS, the real 
interest rate will fall 

 A decline in real interest rate leads to an increase in output 
gap 

 An increase in output gap increases actual inflation  

 Self-fulfilling high inflation! 

 In general exogenous policy rules have this problem. 
Better to use rules that depend on endogenous 
variables (output gap and inflation) 
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Policy rule 

 Setting a rule that would raise the nominal 
interest rate enough such that real interest would 
increase would be enough to solve the multiple 
equilibria problem! For example: 

 

 

 A unique equilibrium exists as long as 

 This is called the “Taylor principle” 

 Taylor was the first to emphasize that the 
nominal interest rates should increase more than 
one-to-one in response to inflation 
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Policy rule 

 The most common rule: “Taylor rule” 

 

 

 Taylor rule was proposed by Taylor in an 
empirical context. 

 When looked at how the US Fed set the interest rates 
historically it looked like they were following a rule that 
looked very much like what Taylor proposed 

 Has been shown to provide a reasonable 
empirical description of the many Central Banks’ 
behavior 

44 

ttxtt xi  ˆ



Policy rule 

 An extension is “Forward looking Taylor rule” 

 

 

 Policymaker responds to expected inflation as 
opposed to contemporaneous inflation. 

 It nests the Taylor rule as a special case 

 With this type of rule and given the rest of the 
model, the condition to ensure unique 
equilibrium is: 
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Model I … 

 A log-linear version of the model in its simplest form has 
following equations: 
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and production function 
can be omitted in this 
version 

 Labor market is always 
cleared as long as 
wages are flexible 

Technology shocks are assumed to be 
persistent 



Model I … 

 But the empirical properties of the model are not 
satisfactory 

 Clearly, more persistency is needed 
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Extension – Inflation persistence 

 Christiano, Eichenbaum and Evans (2005) 

 Extension of Calvo pricing 

 Each period, firms that adjust their price are randomly 
selected 

 With probability          firm can adjust price 

 With probability     it indexes based on past inflation 

 

 

 Aggregate price index becomes 
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Extension – Inflation persistence 

 And the Phillips curve looks as: 

 

 

 

 Or 

 

 

 

 When approximating the real marginal cost by 
the output gap 
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Model II … 

 A log-linear version of the extended model is similar to the 
Model I, except of a more complicated Phillips curve: 
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Model II … 

 From the macro perspective model properties improve 

 

 

 

 

 

 

 

 

 Micro foundation of pricing behavior is questionable 
 Micro studies seems to confirm that firms either change the price or 

not, but they do not seem to index  
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Appendix: Approximation of marginal 
costs by the output gap 
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